
FPAC: Future Prototype Assessment for Cockpit 2.0
Michael Scherer∗, Sabrina Billinghurst‡, Heather Justice†, and Scott Davidoff§

NASA Jet Propulsion Laboratory, California Institute of Technology
4800 Oak Grove Drive
Pasadena, CA 91109

Email: { michael.scherer∗, sabrina.billinghurst‡, heather.justice†, scott.davidoff§ }@jpl.nasa.gov

Abstract—There is a steep learning curve for sequencers
and mission planners to create mission plans for land-
ing and driving robotic vehicles on current text-driven
interfaces. Touch screen interfaces are quickly growing
in popularity as a means to effectively and intuitively
interact with computers and robotic systems. Future Pro-
totype Assessment for Cockpit 2.0 (FPAC) is designed
as a system for assessing the effectiveness of various
touch-based paradigms for mission planning and sequence
development. Operations for approach, landing and inves-
tigation of near-earth objects (NEOs) with the ATHLETE
platform are chosen as the use case for this system.
Scientists, engineers, and other mission-planning roles are
the primary audience for FPAC. Usability and training
minimalization are the primary metrics for this system, in
order to optimize the workflow of sequencers and mission
planners. Flexible touch-based camera controls, interactive
timeline, sequence comparison options, and 3DConnexion
SpaceBall integration are all included features in the
assessment package.

I. INTRODUCTION

Touch-based interfaces have been growing as a means
to control and operate computers. Such interfaces are
more intuitive, reducing the training time for new
users [1]. These traits make touch interfaces desirable as
a new means for planning, sequencing, and controlling
remotely operated vehicles. This system was designed
to operate on the Samsung SUR40/Microsoft PixelSense
platform, formerly referred to as the Microsoft Surface
2.0. Additionally, the 3dConnexion SpaceBall was inte-
grated. The experimental setup can be found in Figure 1.
With these tools and innovative interface design, we
hope to evaluate technologies to benefit and streamline
the planning and sequencing operations of future NASA
spacecraft and robots, which is seen as a growing chal-
lenge with rapidly advancing technologies [2].

A. Background

Current rover planning operations are completed with
a variety of software packages that are generally mission

Fig. 1. Experimental setup

specific. In order to collaborate, plan, and sequence a
mission or drive, many tools are used even within a given
project. For the Mars Exploration Rovers (MER) [3],
planning and scheduling is done through a software
package called MAPGEN [4], [5]. A newer software
package, Ensemble, was created as the next iteration
for planning mission operations for the Mars Phoenix
Lander and the Mars Science Laboratory [6]. Ensemble
is framed within the Eclipse IDE as a collection of
plugins to be interoperable with different missions.

II. OBJECTIVES

The primary objective is to create a set of controls and
a prototype interface for the evaluation of large touch
interfaces as a means of creating sequences and mission
plans for the ATHLETE [7] vehicle to land on, travel
across, and interact with the surface of a Near-Earth
Object (NEO). Using this prototype, user needs can be
assessed in tandem with tests of the usability of various
touch-based controls and interaction schemes.

III. SYSTEM DESIGN

Low fidelity prototypes were created initially to get a
feel for how the interface might be presented. This was
accomplished with photos taken of a white board that
a user was ”interacting” with. Afterwards, the photos



Fig. 2. Low-fidelity prototypes, before (left), and after (right)

were looked at in sequence to give an impression for
the interface by members of the research group to sort
out and get an understanding of technical requirements.
Over time, these prototypes evolved to help establish a
better understanding of the system being designed, as
shown in Figure 2.

The system is split into two major components, the
Input Server and the Client User Interface (UI), as shown
in Figure 3. Communication between the two interfaces
occurs over named pipes with a custom messaging
scheme. This separation was created originally due to
technical limitations of using Unity [8] as the game
engine for the UI. However, the decoupling has a side
effect of improving the modularity of the components,
so that future work with the Surface and SpaceBall can
be implemented much more quickly.

Input Server Client UI

SpaceBall

PixelSense

Named Pipe

Fig. 3. System overview

A. Input Server

The input server asynchronously accepts data from the
SpaceBall and touch points from the Microsoft Surface
SDK, and then relays that information to the Client UI.
The information is relayed over a Named Pipe. The
Named Pipe was chosen because of its simplicity and
reliability for interprocess communication on the same
workstation [9].

B. Message Format

Messages have a fixed width of 12 bytes. The first byte
is the message code, followed by the payload, followed
by the tag. The tag is a single byte that is incremented

with each sent message. This is not to maintain order, as
named pipes transmit all information in order, however
it is to ensure that duplicate messages are not received,
which is the case when a connection becomes inter-
rupted. The message length is always padded to the full
12 bytes.

1) HeartBeatMessage (0x00): The HeartBeatMessage
is the simplest of the messages, with a message code
of 0x00. It does not contain any payload, and is sent
periodically if no other input is being transmitted so that
the connection stays alive.

2) TouchPointMessage (0x01): Touch point messages
contain the x and y coordinates, stored as two 4-byte
IEEE 754 floating-point values. It is followed by a 4-
byte signed integer value representing the id of the touch
point. Each touch point id is unique and allows the
user to see the changes in a single tracked point over
time. A single-byte operation code is also present, which
indicates whether the point is new, existing, or a point
which has just been removed. If the point has just been
removed then the x and y values have no meaning.

3) SpaceBallMessage (0x02): The last of the message
types, the SpaceBallMessage contains the x-y-z transla-
tion or the yaw-pitch-roll rotation of the SpaceBall as 3
floating point values. An opcode is given to determine
whether the message contains translation or rotation
values.

C. Client UI

The Client UI is written in C# in the Unity3d develop-
ment environment. Unity was chosen for its ease of use
in rapidly prototyping new graphic software. The SUR40
is essentially a large, 40” multi-touch capable screen
with an integrated computer. The screen has a resolution
of 1920x1080. The UI allows for the user to create,
edit, and delete waypoints that the ATHLETE robot may
drive to, along with adding leg poses, scrubbing through



Fig. 4. GUI overview

the sequence on a timeline, and finally save and load
collections of sequences.

The workspace supports various multi-touch gestures.
A dragging gesture rotates the view about the verti-
cal axis or the horizontal axis by dragging left/right
or up/down, respectively. A pinch gesture is used for
zooming. Waypoints and the cursor can also be dragged
on the screen. When dragged, their motion is constrained
to the 2D coordinate space of the screen in the 3D scene.

1) Top Down View: This control constrains the view-
ing space of the environment to the surface plane. It
shows the vehicle location, cursor location, and waypoint
locations. The view rotates such that the top matches the
heading of the main workspace view. From this view, the
user can drag the cursor along the plane with one finger
to get constrained motions along x-y.

2) Elevation Control: The elevation control shows the
current vehicle altitude along with the cursor altitude.
The cursor altitude (z) can be changed by dragging the
handle up and down with one finger.

3) Timeline: The timeline control visualizes way-
points and robot actions that occur throughout the simu-
lation as events. It allows the user to play back, and scrub
through, a simulation of the ATHLETE robot. Waypoints
are indicated as square icons below the timeline bar,
while robot actions are indicated as circular icons above
the bar. All waypoints and robot actions may be dragged
independently of one another back and forth across the
timeline. Additionally, they may be deleted by dragging

them up off of the timeline bar. A red ”X” appears
beneath the finger of the user for a delete gesture as
feedforward to indicate what the system sees as the
user’s intent. Feedforward is used because it has been
shown to improve users’ learning of the capabilities of
a system [10].

Fig. 5. Example touch menu

4) Touch Menus: The touch menus are versatile hier-
archical circular menus for accessing additional function-
ality on the system. They are movable in the workspace,
and extendable in code. The circular form factor of
the menu was chosen because of its high end-user
performance [11]. A blue color was chosen to indicate



menu items which traverse down the hierarchy, while
a red color was chosen to indicate menu items which
perform an action.

To create a touch menu, the user presses his or her
finger on an empty spot in the workspace. While he or
she presses, a circle is drawn around the finger to indicate
that a menu create gesture is being performed. Once
the circle closes, then the menu will appear centered
in the location of the users finger. In order to traverse
back up the hierarchy, the center circle can be pressed.
There is also an optional dial which surrounds the menu
which may be rotated. Values generated by this dial are
accessible to all the active menu items. An example of
a touch menu is shown in Figure 5.

5) Sequence Bar: Sequences can be created, selected,
deleted, and saved with the sequence bar. Selecting a
sequence is done with a touch gesture. Sequences can be
rearranged by dragging them to the left or to the right.
Dragging a sequence down off of the bar will delete the
sequence, with feedforward in the same manner as in the
timeline waypoint deletion gesture. Sequences may be
added by pressing the ”plus” button, or saved by pressing
the ”save” icon, which takes the form of a floppy disk.
Adjacent to the name of the sequence is a check box,
which may be selected or deselected through a touch
gesture for comparing the sequences. When a sequence
is selected for comparison in this way, its path appears
as a yellow trajectory in the main workspace so that it
can be visualized against the current active sequence.

6) Space Ball: The SpaceBall, also sometimes re-
ferred to as a ”3D Mouse”, allows for full 6 degree of
freedom control by translating or twisting the control
knob. The space ball serves as a supplemental input
method for FPAC. The primary advantage a space ball
has is its ability to take full six degree-of-freedom input
from the user. In this implementation, cursor movements
and free-form camera control can be performed with the
space ball.

IV. TEST APPROACH

The chosen participants for the study are primarily
rover planners and drivers for MER and Mars Science
Laboratory (MSL) [12]. Participants are first given a
pre-survey to collect demographic information, and then
introduced to the context of the system. Participants are
asked to use the talk aloud protocol, which is to have the
participant speak their current thoughts and intentions
while using the system. A ”training” session is then
done with the participant, where different controls are
indicated to on the screen by the proctor, who then asks

what the participant thinks the functions of said control
are. The participant is then asked to attempt to perform
the actions they expect, and report whether or not the
outcome of such actions were expected.

Next, participants are asked to complete three tasks:
1. a. Create a sequence that follows the green line, such
that the three waypoints lie in the beginning, middle,
and end of the timeline, respectively. All lines should be
green.
1. b. Make the robot go into a landing position which
completes at the last waypoint.
2. Create a new sequence where the robot starts off
not moving on the surface, then stands, and then drives
across the surface. All lines should be green.

Finally, the participants are asked to complete a post-
survey where they list three things they liked about the
interface, three things they didn’t like, and lastly, whether
or not they could see the interface as being used for rover
planning.

V. RESULTS

The cursor appears to be one of the largest sources of
confusion for the users when starting with the system.
After explanation of the cursor’s function, users are able
to complete the assigned tasks with minimal problems.
The users appear to want to manipulate the simulation
model of ATHLETE directly rather than making use of
the cursor.

The users also express a desire to have the ability to
copy and paste sequences and waypoints. Additionally,
they want the ability to select multiple objects which can
be manipulated or deleted as a group.

There was only one frame of reference given with the
spaceball. Users state in some situations, they want a
local frame of reference, and in other situations, they
want a global frame of reference. The users become
frustrated when using the spaceball at times because they
inadvertently manipulate more axis than intended, e.g.
rotating the cursor while they only want to translate the
cursor.

The camera view at times is disorienting to users
because it tracked the simulated vehicle (a ”chase cam”).
When shown the static/free fly camera, they greatly
prefer it. Users indicate that there are times when they
like the ”chase cam”, however they mostly work using
a static camera. Additionally, users want a way to reset
the camera to pre-set views, such as a top down view
where the top of the camera has a heading of 0◦ (North).



VI. DISCUSSION AND FUTURE WORK

Because the cursor was the source of much of the
initial confusion, there is evidence to suggest it should
be removed. Direct manipulation of the simulation model
may serve as a replacement to the functionality of the
cursor. Additionally, this could resolve issues surround-
ing the user’s understanding of how to add waypoints,
as they might be automatically created to match the
manipulations made by the user.

Another important change may be to have the ability
to ”snap” the vehicle to the terrain surface, because
many users desired such functionality. This idea may
be extended such that the vehicle is always constrained
to the terrain surface. This extension is inspired by a
better understanding of the problem domain, which is
less focused on entry, descent, and landing (EDL), and
more focused on daily operations of driving across a
terrain surface. When driving, users also wanted to be
able to specify one or many ”keep out” zones, which
are areas that appear dangerous for vehicle operation,
and thus should be avoided explicitly by any automated
or commanded function of the rover.

There are many limits and bounds that the planners
use to prevent existing rovers from performing dangerous
maneuvers. Any future system would need to incorporate
the ability to edit and view such parameters. It could be
conjectured that such parameters would be best as a side
menu that is not always visible, based on input from the
users that much of the information is copied between
missions and does not always need to be modified. There
are, however, other, more frequently used parameters
for specific functions, such as in the case of driving.
For a given drive, important editable parameters include
maximum drive speed, drive distance, heading, and drive
mode. The drive modes in current systems, MER and
MSL, includes an autonomous ”AutoNav” mode [13].

VII. CONCLUSION

Recognizing FPAC as a prototype, the users overall
seemed satisfied with the system as a starting point for
future sequencing and planning operations. FPAC is far
from being ready to replace existing systems, however
valuable information on the needs of rover planners
along with the usability of various touch-based controls
was gained. This prototype and subsequent experiment
was successful in attaining information which can be
used to design future systems which will incorporate
these technologies.

ACKNOWLEDGMENT

The authors would like to thank the entire Conductor
leadership and team, including Jeff Norris and Victor
Luo. This research was carried out at the Jet Propulsion
Laboratory, California Institute of Technology, and was
sponsored by the Jet Propulsion Laboratory Summer
Internship Program and the National Aeronautics and
Space Administration.

REFERENCES

[1] A. Holzinger, “Finger instead of mouse: Touch screens as a
means of enhancing universal access,” User Interfaces for All,
LNCS 2615, pp. 387–397, 2003.

[2] D. Billman, M. Feary, and J. R. Zumbado, “Evidence report:
Risk of inadequate design of human and automation/robotic
integration,” August 2011.

[3] R. E. Arvidson, S. W. Squyres, R. C. Anderson, and J. F. B.
III, “Overview of the spirit mars exploration rover mission to
gusev crater: Landing site to backstay rock in the columbia
hills,” p. 22, 2006.

[4] M. Ai-Chang, J. Bresina, L. Charest, A. Chase, J. Cheng-jung
Hsu, A. Jonsson, B. Kanefsky, P. Morris, K. Rajan, J. Yglesias,
B. G. Chafin, W. C. Dias, and P. F. Maldague, “Mapgen: Mixed-
initiative planning and scheduling for the mars exploration rover
mission,” IEEE Intelligent Systems, vol. 19(1), pp. 8–12, 2004.

[5] J. L. Bresina, A. K. Jonsson, P. H. Morris, and K. Rajan, “Activ-
ity planning for the mars exploration rovers,” 15th International
Conference on Automated Planning and Scheduling, 2005.

[6] A. Aghevli, A. Bachmann, J. Bresina, and K. Greene, “Planning
applications for three mars missions with ensemble.”

[7] B. H. Wilcox, T. Litwin, J. Biesiadecki, J. Matthews, M. Hev-
erly, J. Morrison, J. Townsend, N. Ahmad, A. Sirota, and
B. Cooper, “Athlete: A cargo handling and manipulation robot
for the moon,” Journal of Field Robotics, vol. 24(5), pp. 421–
434, May 2007.

[8] “Unity3d,” 2012. [Online]. Available: www.unity3d.com
[9] Microsoft, “Interprocess communications.”

[Online]. Available: http://msdn.microsoft.com/en-
us/library/windows/desktop/aa365574(v=vs.85).aspx

[10] D. Freeman, H. Benko, M. R. Morris, and D. Wigdor, “Shad-
owguides: visualizations for in-situ learning of multi-touch and
whole-hand gestures,” pp. 165–172, 2009.

[11] J. Callahan, D. Hopkins, M. Weiser, and B. Shneiderman,
“An empirical comparison of pie vs. linear menus.” [Online].
Available: http://www.donhopkins.com/drupal/node/100

[12] NASA Jet Propulsion Laboratory, “Mars curiosity rover,”
August 2012. [Online]. Available: http://www.jpl.nasa.gov/msl/

[13] D. M. Helmick, A. Angelova, M. Livianu, and L. H. Matthies,
“Terrain adaptive navigation for mars rovers,” 2007 IEEE
Aerospace Conference, pp. 1–11, March 2007.


